corrigé epreuve 2008 : Equation dans C écriture complexe similitude

 

1) (E) : z^3 + (-6 - 4i)z^2 + (12 + 21i)z + 9 - 45i = 0

a) Déterminer la solution imaginaire pure z_0 de (E)

on a z_0 =  ai

z_0 est solution de (E) \Longrightarrow -a^3i + (-6-4i)(-a^2) + (12 + 21i)ia + 9 - 45i = 0

\Longrightarrow -ia^3 + 6a^2 + 4ia^2 + 12ia - 21a + 9 - 45i = 0

i(-a^3 + 4a^2 + 12a - 45) + 6a^2 - 21a + 9 = 0

 

\Longrightarrow
\left\{
\begin{array}{l}
-a^3 + 4a^2 + 12 - 45 = 0 \\
6a^2 - 21a + 9 = 0
\end{array}
\right.
\Longrightarrow 
\left\{
\begin{array}{l}
-a^3 + 4a^2 + 12a - 45 = 0 \\
2a^2 - 7a + 3 = 0
\end{array}
\right.

 

2a^2 - 7a + 3 = 0     \Delta = b^2 - 4ac = 49 - 24 = 25

 

a_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{7-5}{4} = \frac{2}{4} = \frac{1}{2},   

 

a_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{7+5}{4} = \frac{12}{4} = 3


Calculons -a_1^3 + 4a_1^2 + 12a_1 - 45 = -\frac{1}{8} + \frac{4}{4} + \frac{12}{2} - 45 = -\frac{1}{8} + 1 + 6 - 45 = -\frac{1}{8} - 38 \neq 0

 

-a_2^3 + 4a_2^2 + 12a_2 - 45 = -27 + 36 + 36 - 45 = 72 - 72 = 0

donc z_0 = 3i

 

b) Achever la résolution de (E)

(E) \Longleftrightarrow (z - 3i)(z^2 + az + b) = 0

 

z^3 + az^2 + bz - 3iz^2 - 3iaz - 3ib = 0

 

z^3 + (a - 3i)z^2 + (b - 3ia)z - 3ib = 0

 

\Longrightarrow
\left\{
\begin{array}{l}
a - 3i = -6 - 4i \\
b - 3ia = 12 + 21i 
-3ib = 9 - 45i
\end{array}
\right.
\Longrightarrow 
\left\{
\begin{array}{l}
a = -6 - i \\
b =  9 - \frac{45i}{-3i} 
b - 3ia = 12 + 21i
\end{array}
\right.

 

\Longrightarrow
\left\{
\begin{array}{l}
a = -6-i \\
b= +15 + 3i\\
15 + 3i - 3i(-6-i) = 12 + 21i
\end{array}
\right.
\Longrightarrow 
\left\{
\begin{array}{l}a = -6-i \\b = 15 + 3i \\15 + 3i + 18i - 3 = 12 + 21i \end{array}
\right.

 

 

\Longrightarrow \left\{ \begin{array}{l} a = - 6 - i \\ b = 15 + 3i \\ 0 = 0 \end{array} \right.

 

z^2 + az + b = 0 \Longleftrightarrow z^2 + (-6-i)z + 15 + 3i = 0

 

\Delta = b^2 - 4ac = (-6 -i)^2 - 4(15 + 3i) = 36 + 12i - 1 - 60 - 12i = -25 = (5i)^2

 

\Longrightarrow z = \frac{6 + i - 5i}{2}\ ou\ z = \frac{6 + i + 5i}{2}
 

 

\Longrightarrow z = 3 -2i ou z = 3+3i

 

d'où z_1 = 3 + 3i et z_2 = 3 - 2i

 

2) P \rightarrow (O,\vec{u},\vec{v})

    A(3i) , B(3 + 3i) et C(3 - 2i)
    

 

a) placer A,B,C dans le repère

 

b) Calculer \frac{z_A-z_B}{z_c-z_B}

 

\frac{z_A-z_B}{z_c-z_B}= \frac{3i-3-3i}{3-2i-3-3i}=\frac{-3}{-5i}=\frac{-3i}{5}=\frac{3}{5}e^{i\frac{3\pi}{2}}

 

\rightarrow (\overbrace{\vec{BC},\vec{BA}}) = 3 \frac{3\pi}{2}+k2\pi

 

\rightarrow    A,B,C est un triangle rectangle en B
    

 

3) f la similitude directe qui laisse invariant le point B et qui transforme A en C.

 

Graphe à insérer

 

OIF
RESAFAD

EXAMEN.SN V2.0 © RESAFAD SENEGAL Creative Commons License - Avenue Bourguiba x rue 14 Castors, Dakar (Sénégal) - Tél/Fax : +221 33864 62 33